

Performance Diagnostics

VT 275

Technician	Kilometers	Transmission	Ambient temperature	Engine SN	ECM calibration
Date	Miles	Manual Auto	Coolant temperature	Engine HP	IDM calibration
Unit No	Hours VIN	Truck build	Complaint	Engine Family Rating Code	Injector No Turbocharger No

WA

WARNING

To avoid serious personal injury, possible death or damage to the engine or vehicle, read all safety instructions in the "Safety information" section of *Engine Diagnostics Manual* EGES-305 before doing procedures on this form.

Notes

See "Performance Diagnostics"- Section 6 in EGES-305. Use figures and additional information to do each test or procedure on this form. Record results on this form.

Do all checks in sequence unless otherwise stated. Doing a check or test out of sequence could cause incorrect results.

If a problem was found and corrected, it is not necessary to complete the rest of the form unless a performance concern remains.

See Appendix A in EGES-305 for engine specifications.

See Appendix B in EGES-305 or Form CGE 310-1 for Diagnostic Trouble Codes (DTCs).

1. Diagnostic Trouble Codes

- ☐ Install Electronic Service Tool (EST).
- ☐ Use EST to read DTCs.
- ☐ Use EST to check KOEO values for temperature and pressure sensors.

Active DTCs	
Inactive DTCs	
Abnormal sensor values Suspect sensor/value	Yes □ No □

Correct problem causing active DTCs before continuing.
 To access DTCs without EST, see "Diagnostic Software Operation" - Section 3.

2. KOEO Standard Test

☐ Use EST to run KOFO Standard Test

Active DTCs

- Correct problem causing active DTCs before continuing.
- If an EST is not available, see "Standard Test Using Cruise Switches" in Section 3.

3. KOEO Injector Test

☐ Use EST to run KOEO Injector Test

DTCs foun	d

Correct problem causing active DTCs before continuing.

4. Engine Oil

- □ Leaks
- ☐ Contaminated oil (fuel or coolant)
- ☐ Oil grade, viscosity, and level
- ☐ Kilometers or Miles and hours on oil

_	
- [
- 1	Comments
- 1	Comments
- 1	
- 1	
- 1	

5. Fuel Supply System

- ☐ Measure pressure at the secondary fuel filter housing test
- If no concerns are found in test 5.1, do not continue testing fuel system.

5.1. Pressure, quality and	Fuel in tank	Yes □ No □
aerated fuel	Hear FP running	Yes □ No □
First sample	Aerated fuel	Yes □ No □
	Contaminated fuel	Yes □ No □
Second sample	Aerated fuel	Yes □ No □
(if needed)	Contaminated fuel	Yes ☐ No ☐
	Fuel pressure KOEO	Spec Actual
	Fuel pressure low idle	Spec Actual
	Fuel pressure high idle	Spec Actual
5.2. Fuel pump discharge pressure	Discharge pressure	Spec Actual
5.3. Fuel pump inlet restriction	Restriction	Spec Actual

- If a hum can not be heard from the HFCM, verify fuel pump is being powered. Repair as necessary.
- If fuel has air bubbles, check for leaks in supply lines tank to HFCM
- If fuel is contaminated, correct condition.
- If fuel pressure is low or slow to build, replace both filters and retest.
- If fuel pressure is still low or slow to build, do test 5.2.
- If pump discharge pressure is in specification, inspect fuel regulator valve.
- If discharge pressure is low or slow to build, do test 5.3.

6. Intake and Exhaust Restriction

- ☐ Air inlet and duct☐ Hose and piping
- Intake and exhaust restriction
- ☐ Measure restriction at high idle, no load.

Instrument	Spec	Actual	
Magnehelic gauge or Manometer			
Comment			

 Correct problem causing out-of-specification values, before continuing.

7. KOER Standard Test

Note: Engine coolant temperature must be 70 °C (158 °F) or higher.

☐ Use EST to run KOER Standard Test.

DTCs found			

• Correct problem causing active DTCs before continuing.

8. Injection Control Pressure

☐ Use EST to monitor ICP and engine speed.

Condition	Spec	Actual
Low idle		
High idle - Initial		
High idle - After 2 minu	utes	
Aerated oil Yes □ N	lo 🗆	

- If ICP is high or unstable, hold at high idle for 2 minutes.
 Return to low idle, take oil sample, check for foam, and correct condition if oil is aerated.
- If oil is not aerated, disconnect ICP sensor and check for engine stability.
- If problem is corrected, see Operational Voltage checks for ICP sensor in Section 7 in EGES-305.
- If ICP still high or unstable, replace IPR and retest.

9. Injector Disable

 Use EST to run injector disable diagnostics to identify suspect cylinders.

cylinder	EOT	Average fuel rate	Deviation	Average engine load	Deviation
Base Line					
1					
2					
3					
4					
5					
6					
Base Line			1		
Cut-off valu	ies:	Fuel rate		Engine load	

• If any cylinder is suspect, do Test 12.

10. Relative Compression

- ☐ Turn ignition key to ON.
- ☐ Use EST to run Relative Compression Test.
- ☐ Crank engine following EST instructions.

Relative Compression Test	Value
Cylinder 1 Relative Compression	
Cylinder 2 Relative Compression	
Cylinder 3 Relative Compression	
Cylinder 4 Relative Compression	
Cylinder 5 Relative Compression	
Cylinder 6 Relative Compression	

- If a Relative Compression Test and Injector Disable Test identify a suspect cylinder, check for a mechanical problem.
- If a Relative Compression Test does not identify a suspect cylinder, but the Injector Disable Test does, replace suspect injector(s).

11. Air Management

☐ Use EST to set engine idle speed, monitor engine load, toggle EGR valve and monitor MAF.

Idle speed	MAF	Load
EGR close	MAF	Message Set
EGR open	MAF	DTC Set
EGR close	MAF	DTC Set

 Correct problem causing messages or DTCs before restarting.

12. Boost Control

12.1. Linkage connected	Yes □ No □
12.2. Linkage movement	Yes □ No □
Air pressure - Initial movement	Spec Actual
Leaks	Yes □ No □
12.3. Linkage movement	Yes □ No □
12.4. Linkage movement	Yes □ No □
Air pressure - Initial movement	Spec Actual
Leaks	Yes □ No □

13. Torque Converter Stall

- ☐ Set parking brake and apply service brake.
- ☐ Put transmission in drive.
- Push accelerator to the floor, begin timing and monitor tachometer until tachometer stops moving.
- □ Record RPM and time.

Condition	Spec	Actual	
Stall RPM Time (idle to stall in sec	conds)		

- If minimum RPM is reached within specified time, for a launch concern do not continue with performance diagnostics.
- If RPM is low, or was not reached within specified time, continue with performance diagnostics.

14. Crankcase Pressure

- Measure at oil fill tube with crankcase pressure test adapter.
 Clamp off crankcase breather hose.

Instrument	Spec	Actual	
Magnehelic gauge or Manometer			

15. Test Drive (Full load, rated speed)

☐ Use EST to monitor **boost pressure** and engine speed.

Condition	Spec	Spec	Actual
	Engine s	peed Boost	EST boost reading
Peak HP			
Peak Torqu	ue		

- If boost pressure is not to specification continue performance diagnostics; if to specification do not continue.
- Use EST to monitor Mass Air Flow (MAF) and engine speed.

Condition	Spec	Spec	Actual
	Engine s	peed MAF	EST MAF reading
Peak HP			
Peak Torqu	ıe		

- If MAF is not to specification continue performance diagnostics; if to specification do not continue.
- ☐ Measure **fuel pressure** at secondary fuel filter fuel pressure test port (full load, rated speed).

Instrument	Spec	Actual
0 - 160 psi gauge		

- If fuel pressure is low, perform Test 5 including measure fuel inlet restriction.
- ☐ Use EST to monitor **ICP** and engine speed

Instrument		Spec	Actual
EST			
Aerated oil	Yes □ No □	After 2 min.	

- Disconnect ICP and test drive vehicle.
- If problem is corrected, see Operational Voltage checks for ICP sensor in Section 7 in EGES-305.
- If still high or unstable, replace IPR and retest.

Hard Start and No Start Diagnostics

VT 275

Technician	Kilometers	Transmission	Ambient temperature	Engine SN	ECM calibration
Date	Miles	Manual Auto	Coolant temperature	Engine HP	IDM calibration
Date	Hours	Maridai Auto	Coolant temperature	Lingine in	Injector No
Unit No	VIN	Truck build	Complaint	Engine Family Rating Code	Turbocharger No
			•	3 3	•

Λ	
4	WAI

RNING

To avoid serious personal injury, possible death or damage to the engine or vehicle, read all safety instructions in the "Safety information" section of Engine Diagnostics Manual EGES-305 before doing procedures on this form.

See "Hard Start and No Start Diagnostics"- Section 5 in EGES-305. Use figures and additional information to do each test or procedure on this form. Record results on this

For starting concerns with ECT temperatures below 16 °C (60 °F), do Tests 14 and 15. Service as necessary. If a problem was found and corrected, it is not necessary to complete the rest of this form - unless a starting concern

Do all tests in sequence unless otherwise stated. Doing a test out of sequence could cause incorrect results.

If a problem was found and corrected, it is not necessary to complete the rest of the form unless a starting concern

See Appendix A in EGES-305 for engine specifications.

See Appendix B in EGES-305 or Form CGE 310-1 for Diagnostic Trouble Codes (DTCs).

1. Initial Ignition Key On (Do not start)

- ☐ Check for WAIT TO START lamp
- ☐ Check amber WATER IN FUEL lamp
- ☐ Listen for injector precycle. (Duration is temp. dependent.)
- ☐ Listen for hum or buzz from electronic fuel pump.

Comments		

2. Engine Cranking

- □ Does engine crank?
- ☐ Check cranking rpm. (Instrument panel)
- ☐ Check smoke color.

Check	Spec	Actual
rpm		
Smoke color		

3. Diagnostic Trouble Codes

- ☐ Install Electronic Service Tool (EST).
- ☐ Use EST to read DTCs.
- ☐ Use EST to check KOEO values for temperature and pressure sensors.

Active DTCs			
Inactive DTCs			
Abnormal sensor values Suspect sensor/value	☐ Yes	□ No	

- Correct problem causing active DTCs before continuing.
- If an EST is not available, see "Standard Test using Cruise Switches" in Section 3.

4. KOEO Standard Test

☐ Use EST to run KOEO Standard Test

Active DTCs		

- Correct problem causing active DTCs before continuing.
- If an EST is not available, see "Standard Test using Cruise Switches" in Section 3.

5. KOEO Injector Test

☐ Use EST to run KOEO Injector Test.

Active DTCs		

Correct problem causing active DTCs before continuing.

6. EST Data List

- ☐ Enter data in the Cranking Spec column.
- ☐ Monitor KOEO values and enter in KOEO column. ☐ Crank engine and monitor DATA for 20 seconds.
- ☐ Enter data in the Actual Spec column.

PID	KOEO	spec	spec
VBAT			
RPM			
ICP			
EOP			
EGRP			

- If voltage is below spec, see "ECM Power" in Section 7.
- If no rpm is noted, check DTCs.
- If ICP is below spec, do "Low ICP System Pressure Test
- If EOP is below spec, see "Engine Symptoms Diagnostics" in Section 4 and "EOP switch" in Section 7.

7. Engine Systems

☐ Loose connections

Fuel	Oil	Coolant	Electrical	Air

8. Engine Oil

	Leaks
	Contaminated oil (fuel or coolant)
	Oil grade, viscosity, and level
П	Kilometers or Miles and hours on oil

Comments		

9. Intake and Exhaust Restriction

	Hoses and p
	Filter minder
	Intake and ex

Cranking Astual

☐ Intake and exhaust restriction

☐ Air inlet and duct

Hoses and piping

10. Fuel Supply System

10.1 Pressure, Fuel in tank

- ☐ Measure pressure at the secondary fuel filter housing test
- ☐ If concerns were not found in test 10.1, do not continue testing fuel system.

Yes ☐ No ☐

quality, and		
aerated fuel	Hear FP running	Yes □ No □
First sample	Aerated fuel Contaminated fuel	Yes □ No □ Yes □ No □
Second sample (if needed)	Aerated fuel Contaminated fuel	Yes □ No □ Yes □ No □
	Fuel pressure KOEO	Spec Actual
10.2 Fuel pump discharge pressure	Discharge pressure	Spec Actual
10.3 Fuel pump inlet restriction	Restriction	Spec Actual

- If a hum can not be heard from the HFCM, verify fuel pump is being powered. Repair as necessary.
- If fuel has air bubbles, check for leaks in supply lines tank to HFCM.
- If fuel is contaminated, correct condition.
- If fuel pressure is low or slow to build, replace both filters
- If fuel pressure is below specification, do test 10.2.
- If pump discharge pressure is in specification, inspect fuel regulator valve.
- If discharge pressure is low or slow to build, do test 10.3.

11. Main Power Relay Voltage to ECM

- ☐ Connect breakout harness between ECM main power relay and distribution box
- ☐ Crank engine and use a DMM to measure voltage to ECM. (Min 130 rpm for 20 seconds)
- ☐ Check voltage between connector Pin 5 and ground

Instrument	Spec	Actual	
DMM			

12. Main Power Relay Voltage to IDM

- ☐ Connect 12 Pin Breakout harness between engine and chassis harness
- ☐ Crank engine and use a DMM to measure voltage to IDM. (Min 130 rpm for 20 seconds)
- ☐ Check voltage between connector Pin 12 and Pin 1.

Instrument	Spec	Actual	
DMM			

13. Low ICP System Pressure

- ☐ Do only the following tests, if ICP was not to spec during
- ☐ Start and continue Test 13.1 System Function, if lube oil pressure is not a concern and terminals on the IPR valve and engine harness are not damaged or corroded.
- ☐ If test result is Yes for 13.1 System Function, **do not do** Tests 13.2 through 13.5 for low ICP.

Low ICP test	Question	Result		
13.1 System	IPR connectors: Corroded, bent or pushed back pins	☐ Yes		No
function	Over 3.45 Mpa (500 psi) (0.82V)?	☐ Yes		No
13.2	Audible air leak?	Unplugged	B+ a	applie
IPR function		☐ Yes		Yes
		□ No		No
13.3	Audible air leak?	Cylinder He	ad	
Under valve		Left	Rig	ht
cover leaks		☐ Yes		Yes
		□ No		No
		Crankcase		
		Left	Rig	ht
		☐ Yes		Yes
		□ No		No
13.4	Audible air leak?	Left	Rigl	nt
Cylinder Head isolation		☐ Yes		Yes
isolation	i e e e e e e e e e e e e e e e e e e e	· — · ·	_	

Over 3.45 Mpa (500 psi)

13.5

pump

High-pressure

□ No

☐ Yes

□ No

☐ No

14. Glow Plug System

- ☐ Use EST to do Output State Test for glow plugs. After 40 seconds, measure amperage and check for DTCs.
- ☐ If test results in 14.1 are within specification, **do not** continue testing the glow plug system.

14.1 Glow Plug system	Cylinder Head		Spec		Ad	Actual	
Amperage	Lef Rig		24-42 24-42				
14.2 Glow Plug Harness	Glow plugs		gs LT Glow		plugs	plugs RT	
to Ground	1 Yellow	3 Red	5 White	2 Yellow	4 Red	6 White	
Spec 0.1 -6 ohmns							
14.3 Glow Plug to Ground Spec 0.1 -6 ohmns							
14.4 Engine Harness 3-pin to Relay Spec <5 ohmns							
14.5 Relay Operation	Terminal		5	Spec		Actual	
	Battery feed B+ Relay output B+						

- If results of 14.1 are not within spec, do test 14.2 for all glow plugs out of spec.
- If results of 14.1 are 0 amps for both cylinder heads and DTC 251 was not set, do test 14.5.
- If DTC 251 was set, do GPC (Glow Plug Control) circuit" in Section 7.
- If results of 14.2 are within spec, do test 14.4.
- If results of 14.2 are not within spec, do test 14.3 for all glow plugs out of spec.
- If results of 14.3 are within spec, replace failed glow plug
- If results of 14.3 are not within spec, replace the glow plug that was out of spec.

15. Inlet Air Heater System

- ☐ Install Amp Clamp around feed wire and use EST to do Output State Test for Inlet Air heater. After 4 seconds, measure amperage for heater wire.
- ☐ If test results in 15.1 are within specification, **do not** continue testing the Inlet Air Heater System.

Test	Air Heater Wire		
	Spec	Circuit	
15.1 Amperage draw	50 +/- 5 amps		
15.2 Voltage at Element	BAT V		
15.3 Resistance or Element	< 5 ohms		
15.4 Wiring harness continuity and resistance	< 5 ohms		
15.5 Relay operation Battery feed Relay output	B+ B+		